- Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1995). ASTRO and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Webster, M. S. (1956). J. Chem. Soc. pp. 2841-2845.

Acta Cryst. (1997). C53, 1362-1363

cis-6,10b,11,12-Tetrahydro-12-hydroxypyrrolo[1',2':2,3]pyridazino[6,1-*a*]isoindol-6-one

Jozef Kožíšek,^{*a*} Ingrid Svoboda,^{*b*} Štefan Marchalín^{*c*} and Bernard Decroix^{*d*}

^aDepartment of Inorganic Chemistry, Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, 812 37 Bratislava, Slovakia, ^bFachbereich Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, D-642 87 Darmstadt, Germany, ^cDepartment of Organic Chemistry, Faculty of Chemical Technology, Radlinského 9, Slovak Technical University, 812 37 Bratislava, Slovakia, and ^dLaboratoire de Chimie, Université Du Havre, 30 Rue Gabriel Péri, 766 00 Le Havre, France. E-mail: kozisek@cvtstu.cvt.stuba.sk

(Received 24 July 1996; accepted 26 March 1997)

Abstract

The title molecule, $C_{14}H_{12}N_2O_2$, consists of a pyridazine ring fused to a five-membered pyrrole ring and to an isoindole moiety. The pyrrole ring and the isoindole moiety are planar, defining a dihedral angle of 35°, while the pyridazine ring adopts an envelope conformation. The isoindole ring and the hydroxy group are in a *cis* configuration.

Comment

It has been reported that isoindolo[2,1-a]quinoline derivatives similar to vinpocetine (Karpati & Szporny, 1976) have vasodilator activity (Ishihara, Kiyota & Goto, 1990). These results, in connection with our studies on polycyclic heterocycles containing a pyrrole ring, prompted us to search for pyrrolo analogues of this system. The stereoselective reduction of racemic 10b, 11-dihydropyrrolo[1',2':2,3]pyridazino[6,1-a]isoindole-6(6H),12-dione, (I), with NaBH₄ in methanol at 272 K led to the title compound, (II) (Marchalín & Decroix, 1995). Only one diastereomer was isolated and

its structure was supported by ¹H and ¹³C NMR spectral data. To confirm the *cis* configuration of the hydroxy group and the isoindole ring, the X-ray diffraction study of (II) was undertaken.

The bond lengths are consistent with average values in the usual sources [*International Tables for Crystallography* (1992, Vol. C, Table 9.5.1.1)]. Selected torsion angles are given in Table 1.

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

Experimental

The title compound was prepared by stereoselective reduction of racemic 10b,11-dihydropyrrolo[1',2':2,3]pyridazino[6,1-a]-isoindole-6(6*H*),12-dione, (I), with NaBH₄ in methanol at 272 K.

Crystal data

$C_{14}H_{12}N_2O_2$	Mo $K\alpha$ radiation
$M_r = 240.26$	$\lambda = 0.71069 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_{1}/n$	reflections
a = 8.386(2) Å	$\theta = 17.3 - 21.6^{\circ}$
b = 8.149(2) Å	$\mu = 0.094 \text{ mm}^{-1}$
c = 17.267 (4) Å	T = 298 (2) K
$\beta = 99.04 (4)^{\circ}$	Block
$V = 1165.3(5) Å^3$	$1.32 \times 0.80 \times 0.57$ mm
Z = 4	Colourless
$D_x = 1.369 \text{ Mg m}^{-3}$	
D_m not measured	

Data collection	
Stoe Stadi-4 diffractometer	$\theta_{\mathfrak{n}}$
$\omega/2\theta$ scans	h
Absorption correction: none	<i>k</i> :
2573 measured reflections	<i>l</i> =
1603 independent reflections	3
1454 reflections with	
$I > 2\sigma(I)$	
$R_{\rm int} = 0.012$	

Refinement

Refinement on F^2	(4
$R[F^2 > 2\sigma(F^2)] = 0.033$	Δ
$wR(F^2) = 0.090$	Δ
S = 1.045	Ε
1601 reflections	
168 parameters	
H-atom parameters refined	E
only for H21	
$w = 1/[\sigma^2(F_o^2) + (0.0426P)^2]$	S
+ 0.3151 <i>P</i>]	
where $P = (F_o^2 + 2F_c^2)/3$	

 $_{100} = 23.05^{\circ}$ $= -9 \rightarrow 9$ $= -6 \rightarrow 8$ $= -14 \rightarrow 19$ standard reflections frequency: 120 min intensity decay: none

 $\Delta/\sigma)_{\rm max} = 0.054$ $\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$ $\Lambda \rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3}$ xtinction correction: SHELXL93 (Sheldrick, 1993) xtinction coefficient: 0.039(3) cattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected torsion angles (°)

C13N1N2C10	-203(2)	C10-C11-C12-O2	171 38 (12)	
C_4 N2 C10 C11	107.46(14)		444(2)	
$N_1 = N_2 = C_1 = C_1 = C_1$	- 107.40 (14)		44.4(2)	
	40.0 (2)		173.3 (2)	
	-61.0(2)	CII-CI2-CI3-NI	-15.2(2)	
C9 - C10 - C11 - C12	-172.55(12)			

Data collection: Enraf-Nonius SDP-Plus Structure Determination Package (Frenz, 1985). Cell refinement: SHELXL93 (Sheldrick, 1993). Data reduction: REDU4 (Stoe & Cie, 1988). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93. Molecular graphics: ORTEPII (Johnson, 1971). Software used to prepare material for publication: PARST (Nardelli, 1983).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1289). Services for accessing these data are described at the back of the journal.

References

- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Ishihara, Y., Kiyota, Y. & Goto, G. (1990). Chem. Pharm. Bull. 38, 3024-3030.
- Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
- Karpati, E. & Szporny, L. (1976). Arzneim. Forsch. 26, 1908-1912.
- Marchalín, S. & Decroix, B. (1995). Heterocycles, 41, 689-696. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1988). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (1997). C53, 1363-1366

1,3,3-Trimethyl-5-styryl-2-[(1,3,3-trimethyl-5-styryl-2-indolinylidene)methyl]-**3H-indolium Picrate: an Extended Trichromophoric System**

HANS-HERMANN JOHANNES,^a WALTER GRAHN,^a INA DIX^a AND PETER G. JONES^{b*}

^aInstitut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, E-mail: jones@xray36.anchem.nat.tu-bs.de

(Received 17 April 1997; accepted 20 May 1997)

Abstract

The trichromophoric system of the title compound, $C_{39}H_{39}N_2^+$. $C_6H_2N_3O_7^-$, adopts a di-*cis* conformation in which the indolenine end groups are mutually rotated; the interplanar angle is 47.1 (1)°. The transconfigurate styryl moieties are anti orientated relative to the cyanine unit. The length of the extended chromophore (H19 \cdot ·H19') is 26.0 Å.

Comment

Organic non-linear materials possess promising properties for a wide range of applications. Cyanines and other polymethine dyes exhibit interesting third-order non-linear properties (Nalwa, 1993; Dirk et al., 1995; Kawabe, Sakai, Ikeda, Hasegawa & Kawasaki, 1993; Werncke, Pfeiffer, Lau, Grahn & Johannes, 1997). In order to investigate structure-property relationships. we have developed new methods of functionalizing cyanines while conserving the chromophore (Grahn, Johannes, Rheinheimer, Knieriem & Würthwein, 1995; Johannes, Grahn, Reisner & Jones, 1995). Since polymethines that are halogenated in the chains and/or at the end groups are easily accessible (Tyutyulkov, Fabian, Mehlhorn, Dietz & Tadjer, 1991; Grahn et al., 1995), we can introduce carbon substituents into the chain and/or the end groups by palladium-catalyzed cross-coupling reactions (Johannes & Grahn, 1997).

The title compound, (1a), was prepared by Heck reaction of the 5,5'-diiodoindocyanine (2) with an excess of styrene in DMF. The tetrafluoroborate counterion was replaced by picrate in order to fix the anion to the cyanine cation by π -stacking (In, Nagata, Doi, Ishida & Wakahara, 1997). We report here the crystal structure of (1a).

The cyanine adopts a di-cis conformation in the solid state as in solution (Johannes & Grahn, 1997); the